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Abstract

Our understanding of decision‐making processes and cognitive biases is ever

increasing, thanks to an accumulation of testable models and a large body of

research over the last several decades. The vast majority of this work has been done

in humans and laboratory animals because these study subjects and situations allow

for tightly controlled experiments. However, it raises questions about how this

knowledge can be applied to wild animals in their complex environments. Here, we

review two prominent decision‐making theories, dual process theory and Bayesian

decision theory, to assess the similarities in these approaches and consider how they

may apply to wild animals living in heterogenous environments within complicated

social groupings. In particular, we wanted to assess when wild animals are likely to

respond to a situation with a quick heuristic decision and when they are likely to

spend more time and energy on the decision‐making process. Based on the literature

and evidence from our multi‐destination routing experiments on primates, we find

that individuals are likely to make quick, heuristic decisions when they encounter

routine situations, or signals/cues that accurately predict a certain outcome, or easy

problems that experience or evolutionary history has prepared them for. Conversely,

effortful decision‐making is likely in novel or surprising situations, when signals and

cues have unpredictable or uncertain relationships to an outcome, and when

problems are computationally complex. Though if problems are overly complex,

satisficing via heuristics is likely, to avoid costly mental effort. We present

hypotheses for how animals with different socio‐ecologies may have to distribute

their cognitive effort. Finally, we examine the conservation implications and

potential cognitive overload for animals experiencing increasingly novel situations

caused by current human‐induced rapid environmental change.
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1 | INTRODUCTION

Why did the monkey cross the road? To answer this question, a

behavioral ecologist would examine the context of this movement

decision, the monkey's behaviors before and after, and the patterns

of past decisions made in similar contexts. For example, if there was a

large fruit tree across the road, we may infer that our focal female

was hungry and crossed the road to feed. If she crossed with other

group members, we might infer that she was averse to the risk of

encountering a predator in the open area of the road, or was averse

to being left behind. If she departed right after the calls of a

neighboring group could be heard up ahead, and she often

participated in intergroup fights with that group, we may infer that

she crossed to try and displace the neighboring group from a food

patch that she valued. Conversely, we may be overthinking our focal

female's decision‐making process. Perhaps in this case, she is simply

using a rule‐of‐thumb such as, “follow the alpha no matter the

situation.” How can we ever truly understand why one of our study

subjects made any decision? As behavioral ecologists, interested in

elucidating the proximate and ultimate explanations for animal

behavior, understanding of decision‐making processes is vital.

Decision making processes are shaped by evolution and natural

selection acts on animals based on the outcomes of their decisions

(McNamara & Houston, 1980). As primatologists that study wild

monkeys and sometimes conduct field experiments, we have often

wondered about the decision‐making processes that our study

subjects undergo. Sometimes participants in our foraging experi-

ments show immediate responses that vary little within and among

individuals, while other times they show widely variable responses

that improve with experience (e.g., Arseneau‐Robar et al., 2022;

Teichroeb & Aguado, 2016). How can we best understand their

behavior? The literature on decision‐making in psychology, neuro-

science, and related fields presents a vast number of models,

subsumed into bodies of theory. It is difficult to assess which of

these presents the best framework to use when examining the

decision‐making process from a behavioral ecology standpoint. The

social and ecological contexts introduce a plethora of factors for

animals to focus their limited attention on (Dukas, 2002, 2004) and

make decisions about, both at the level of the group and the

individual (Pelé & Sueur, 2013). However, these four categories:

social decisions, ecological decisions, group‐level decisions, and

individual‐level decisions, have different bodies of theory where

work is usually focused, and framed at both ultimate and proximate

levels of explanation (e.g., social: game theory, Axelrod &

Hamilton, 1981; Giraldeau & Caraco, 2000; ecological: optimal

foraging theory, Krebs & Stephens, 2019; group: self‐organization,

Couzin & Krause, 2003, quorum threshold model, Sumpter &

Pratt, 2009; individual: sequential sampling models, Ratcliff

et al., 2016). In addition, researchers typically focus on the outcome

of decisions, because these are measurable, and it is more difficult to

examine the decision‐making process in the “black box” of an animal's

mind (Trimmer et al., 2008).

Our goal in this paper is to consider decision‐making processes in

wild animals by reviewing two prominent decision‐making theories,

dual process theory (DPT) and Bayesian decision theory (BDT).

Although these theories were developed to explain decision‐making

in humans, the continuity of evolutionary processes in neural

development (Cisek, 2022) suggests that similar psychological

constructs may also occur in other animals. We examine the

similarities between these two theories and how they may apply to

animal decision‐making in the wild, taking a cognitive ecology

approach (Dukas, 1998a; Real, 1993). In particular, we seek to

answer the question, when are wild animals likely to respond to a

situation with a quick heuristic decision and when are they likely to

spend more time and energy on the decision‐making process? To

answer this question, we draw from the literature and utilize

examples from our foraging experiments in the field and in captivity.

We consider how animals with different socio‐ecologies may have to

distribute their mental effort in their daily lives. Finally, we reflect on

how current human‐induced rapid environmental change may impact

animal decision making, cognitive load, and overload.

2 | DUAL PROCESS THEORY

The idea that the mind is divided into two different systems dates

back at least as far as Plato, and has been written about by many

well‐known theorists, including Descartes, Leibniz, and Freud

(Frankish & Evans, 2009). Today, this idea is formalized in DPT in

social psychology (Sloman, 1996), which is not without controversy

(see criticisms below). A slew of dual process models began to flood

the literature in the 1980s (Table S1), with the most neutral

terminology referring to Types 1 and 2 processes of cognition

(although Systems 1 and 2 are often used; Evans & Stanovich, 2013;

Kahneman & Frederick, 2002; Stanovich, 1999). Type 1 processes are

those that occur automatically, with little to no effort, while Type 2

processes are controlled, analytic, and high effort. Evans (2008)

attempted to unify the various dual process models by showing how

their descriptors cluster (Table 1). Cognitive processes are typically

considered to be Type 1, or “automatic,” if they are either

unintentional, efficient, uncontrollable, or unconscious (Gawronski

& Creighton, 2013). Thus, Type 1 processes are associated with

prior knowledge or belief (i.e., implicit or procedural memory) and

with heuristic processes that arise from the quick perception of

situations. Type 2 processes are suggested to be slow and deliberate,

and to require working memory (Evans & Stanovich, 2013;

Evans, 2003; Squire, 1986; but see: Thompson & Newman, 2020;

Thompson, 2013).
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It is a recurring hypothesis throughout DPT that Type 1 cognition

evolved earlier and that we share it with other animals, whereasType

2 is more recently evolved, associated with language and a theory of

mind, and occurs only in humans (Epstein & Pacini, 1999; Evans &

Over, 1996; Evans, 2008; Reber, 1993; Stanovich, 1999). In actuality,

the evolutionary order of the development of dual‐process capabili-

ties is not understood and the proposal that Type 2 functioning is

only possible in humans has not stood up to scrutiny. Many animal

species, including insects, birds, and mammals, show evidence of a

distinction between stimulus‐bound and higher‐order cognition (Kelly

& Barron, 2022; Toates, 2006; Tomasello & Call, 1997). Animal

evidence for a range of cognitive skills that would fall into Type 2 is

diverse, including learning, cultural traditions, forethought, use of

memory, as well as rule‐based and abstract reasoning (e.g., insects:

Chittka, 2017; Cope et al., 2018; Perry & Barron, 2013; birds: Clayton

& Dickinson, 1998; Clayton et al., 2001; Hunt, 1996; mammals:

Breuer et al., 2005; Janmaat et al., 2013; Kinani & Zimmerman, 2015;

McGrew, 2010; Meulman & van Schaik, 2013; Osvath and

Osvath, 2008; Ottoni & Izar, 2008; Yurk et al., 2002), and great apes

and jays show advanced social cognitive abilities such as sensitivity to

the desires and beliefs of others (Krupenye & Call, 2019). Thus, Evans

(2009) suggests that it is better to think of Type 2 as uniquely

developed in humans rather than only occurring in humans.

For humans, Type 1 cognition is suggested to be highly

accessible and always at play, with the intuitive judgments that

arise from it occupying a position between perceiving stimuli

and more deliberate, effortful reasoning (Kahneman, 2003;

Sloman, 2002). The immediate impressions made by this system

are most accessible based on the physical salience of available cues,

such as their size, distance, loudness, similarity, causal propensity,

surprisingness, and affective valence (Kahneman & Frederick, 2002;

Kahneman, 2003). Indeed, overriding these Type 1 assumptions is

the goal of research trying to undo stereotypical thinking and

unconscious bias (e.g., racism, sexism) in human societies (e.g.,

Corcoran et al., 2009; Gregg et al., 2006). Type 2 is suggested to

monitor (either in parallel or sequentially) the impressions of Type 1

and at times override and inhibit the intuitions arising from it,

allowing for deeper thinking and correction of immediate judg-

ments (Sloman, 2002; Trimmer et al., 2008). Thus, Type 1 is often

considered pre‐attentive, rapidly assessing and forming impres-

sions and associations that allow selection of phenomena that

require Type 2 processing (Stanovich, 2011). For example, in social

interactions, humans use Type 1 processing to rapidly assess

emotional information from facial expressions and body language,

determining potential threats, and deciding quickly where to

redirect their gaze and attention for further action that would

require Type 2 processing (Carretié et al., 2007; Frith, 2012; Mogg

et al., 1995; Winston et al., 2003).

Drawing on dual‐process theories of learning (e.g., Reber, 1993),

Kahneman (2003) suggests that the accessibility of Type 1 to an

individual is a continuum. When an individual has learned a

challenging task through slow Type 2 processes and has become

very experienced and skilled, Type 1 can take over and allow for

automatic, reflexive responses and intuitive decision making

(Kahneman, 2003; Osman, 2004). This is a top‐down way to learn a

cognitive skill, where explicit (declarative) knowledge is refined

with practice to become easily accessed procedural knowledge

(Anderson, 1982; Sun et al., 2001). A good example is learning how to

drive. At first, simultaneously operating the vehicle and obeying the

rules of the road is difficult but soon we perform these actions with

little thought. Examples of apparent Type 2 processes proceeding to

Type 1 can also be seen in over‐trained laboratory animals. Research

done with rats showed that over‐training them on a rewarding lever‐

pressing activity transforms this originally goal‐directed behavior

into a simple habit that is autonomous of its original goal

(Dickinson, 1985). Similarly, with extended training, bumblebees

(Bombus terrestris audax) switch from a conceptual solution to a task

to a simple heuristic solution (MaBouDi et al., 2020). Learning

cognitive skills can also proceed in a bottom‐up fashion, where a

series of complex actions are learned through associative learning.

Here, individuals select actions over time that lead to positive

reinforcement and avoid those that lead to negative reinforcement.

This type of skill learning does not require explicit (declarative)

knowledge initially to build procedural knowledge (Scott, 2016;

Sun et al., 2001), which may be the way that many animals learn

cognitive skills.

TABLE 1 A sample of labels and descriptors for the two types of
cognitive processes proposed by dual process theory (modified from
Evans, 2008).

Type 1 Type 2

Labels Labels

Automatic Conscious

Experiential Rational

Heuristic Analytic

Reflexive Controlled

Stimulus‐bound Reflective

Holistic Higher cognition

Descriptors Descriptors

Un(pre)conscious Logical

Rapid Slow

Low effort High effort

Intuitive Deliberate

Autonomous Explicit

Implicit Inhibitory

Associative Sequential

Pragmatic Low capacity

Contextualized Evolutionary recent

Individually universal Linked to language

Evolutionarily old Uniquely human
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2.1 | Why would two types of cognition be
necessary?

Why would natural selection develop two cognitive processes, when

energy to devote to neural tissue is finite and useable for other

purposes? Evidence from the development of AI has shown that

systems that utilize a similar dual framework achieve the best

performance. For example, AlphaGo has shown great success in

winning the strategy game of Go by combining a quick deep neural

network with a slower tree search. Analogous to Type 1 processing,

the deep neural network rapidly learns the correlation between the

configuration of the board and its policy values (i.e., the reward) (Kelly

& Barron, 2022; Silver et al., 2016). Analogous to Type 2 processing,

the slower tree search takes in the current state of the game board

and models the outcome of possible future moves. While both

systems can function separately, optimal performance was seen

when they were allowed to interact, with the deep neural network

rapidly assessing the board configuration (i.e., defining the problem

space) and constraining the tree search to moves that were more

likely to be beneficial (Kelly & Barron, 2022; Silver et al., 2016).

Feedback could also go in the other direction, with moves that the

tree search determined to be beneficial being input into the neural

network, improving the function of the network over time; analogous

to Type 2 processing being transferred to Type 1 through practice

and repetition (Kelly & Barron, 2022; Silver et al., 2016).

It is important to remember however, that AI is developed

without the constraints that evolution bestows upon animal brains

(Cisek, 2022; Pessoa et al., 2021), so examples from neuroarchitec-

ture that actually evolved through selective processes are more

informative. Research on the mushroom bodies of insect brains

provides such an example and shows that their dual‐process systems

allow the filtering of background stimuli to focus attention on certain

aspects of the environment (e.g., the location of food and water),

giving them the ability to learn (reviewed in: Kelly & Barron, 2022).

Here, Type 1 systems provide “attentional filtering” that allows Type

2 processes to be more efficient, making them extremely beneficial in

insect evolution.

2.2 | Criticisms of DPT

Dualistic decision models have been extremely popular in the

cognitive and behavioral sciences (Gawronski & Creighton, 2013)

and often provide a satisfactory explanation for research results

(Evans, 2012). In neuro‐ and behavioral economics, DPT has

particularly influenced research in the Heuristics and Biases tradition

(the study of judgment and decision‐making under risk and

uncertainty) and the refinement of interpersonal and intertemporal

choice tradition (the study of time preferences and impulse control)

(Grayot, 2020). However, the last two decades have brought intense

scrutiny to DPT and criticisms have been building (Gigerenzer &

Regier, 1996; Grayot, 2020; Keren & Schul, 2009; Keren, 2013;

Kruglanski & Gigerenzer, 2011; Osman, 2004). Of the criticisms that

have been articulated, the most important for our purposes are the

following: (1) DPT was developed in an ad hoc way, to explain a

“known” phenomenon, and thus is often presented as irrefutable. (2)

The models are often conceptually vague and imprecise, which

explains why many research findings can be accommodated within

them. (3) The dual systems proposed by DPT do not seem to be

discreet. Regarding this third criticism, it has been pointed out that it

is not obvious exactly what distinguishes Type 1 from Type 2

processing (Newstead, 2000; Osman, 2004) and if there are two

systems, it is unclear how they interact, with scholars arguing for

both parallel and sequential operation (Evans, 2008; Keren &

Schul, 2009). Certain neuroanatomical areas have not been specifi-

cally identified for each system (Keren, 2013; Osman, 2004) and

indeed, evidence indicates that brain regions associated with both

systems overlap and crosscut one another (Evans & Stanovich, 2013;

Grayot, 2020; Keren & Schul, 2009; Mugg, 2016). (4) Importantly,

DPT was not developed with consideration of evolutionary processes

and their effects on biological systems. This evidence all suggests that

rather than two distinct systems, cognitive processes are more of a

continuum from pre‐attentive processing to greater degrees of

investment and analyses, and that a binary view is incorrect (Keren &

Schul, 2009; Kruglanski & Gigerenzer, 2011; Newstead, 2000).

Grayot (2020) also importantly points out that although DPT often

works well to explain behavior in laboratory settings, its applicability

outside of these controlled conditions has been questioned.

3 | BAYESIAN DECISION THEORY

BDT is another important psychological construct for understanding

decision‐making. BDT focuses on the fact that decisions are

almost always made under uncertainty with a probability of risk

(Ellsberg, 1961) and uses probabilistic inference (LaPlace, 1820) by

applying Bayesian statistics to the decision‐making framework. BDT

expects that an individual should have preferences for actions based

on “the expected utility of their consequences and the conditional

expected utility of their consequences given their performance”

(Bradley, 2007; Jeffrey, 1983; Savage, 1972: p. 234). Within decision

theory, the best outcome of a decision is called the utility function U

(outcome), so maximizing U should be the goal of any decision. In a

particular situation, each decision made (a) will lead to an outcome (x),

such that a set of decisions will actually have a probability distribution

around the goal of maximizing U denoted by: p(outcome = x|decision =

a) (Körding, 2007). Thus, in an attempt to make the best decision an

individual should combine the utility function with the distribution of

outcomes from their past decisions, to get an expected utility: E

[Utility (decision)] = the sum of possible outcomes of p(outcome|

decision) U(outcome). Adding Bayesian statistics to this framework

allows the addition of new sensory information on the current state

of, or current beliefs about, the decision‐making environment

(a likelihood), to be integrated with this set of information from the

past (the prior) to create a posterior distribution using Bayes' rule,

and finally a cost function is added, which is the quantity the
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decision‐maker would like to minimize (Körding, 2007; Ma, 2019;

Figure 1). This should lead to the most accurate decisions, given that

the decision‐maker is always in a position of uncertainty. Therefore,

BDT allows a way for our beliefs to be combined with our utility

function and provides a mathematical framework for decision‐making

that can be used to build psychological models (Körding, 2007;

McNamara & Chen, 2022).

BDT predicts that individuals should make near optimal decisions

in stable environments because their knowledge of the prior

distribution should be accurate and by using Bayesian updating

procedures, they can update their assessment of the current situation

before making a choice (McNamara et al., 2006). We do not have to

assume that animals are doing complicated mathematics because

natural selection should favor those that behave as if they are using

Bayesian updating (Trimmer et al., 2011), and the same can be said of

humans (Domurat et al., 2015; Wu et al., 2017). Thus, under

predictable distributions of outcomes, simple heuristics can be

learned or can evolve to produce decisions that can approach

Bayesian optimums with little cognitive cost to the decision‐maker

(Gigerenzer & Todd, 1999; Lange & Dukas, 2009; McNamara &

Houston, 1980; Trimmer et al., 2011). Indeed, Higginson et al. (2018)

have shown that a simple rule for how intensely to forage, which is

based solely on an animal's physiological state (i.e., energy reserves),

performs almost as well as optimal Bayesian learning.

A lot of evidence has amassed to support BDT and the

occurrence of probabilistic inference in both humans (e.g., reviewed

in: Chater et al., 2006; Denison & Xu, 2012; Jurafsky, 1996; Knill &

Richards, 1996; Körding & Wolpert, 2006; Oaksford & Chater, 2007;

Steyvers et al., 2006; Tenenbaum & Griffiths, 2003; Tenenbaum

et al., 2006; Theeuwes et al., 2022) and other animals (e.g., reviewed

in: Valone, 2006; Kepecs & Mainen, 2012; McNamara et al., 2006;

Pouget et al., 2013; Trimmer et al., 2011). Most early studies that

examined Bayesian inference in humans presented them with a

textbook paradigm where the description of statistics for a certain

situation were provided using conditional probabilities (the base rate,

hit rate, and false alarm rate), and the task was to estimate the

posterior probability (McDowell & Jacobs, 2017). An example is

provided by this classic problem (Eddy, 1982; Gigerenzer &

Hoffrage, 1995, p. 685):

The probability of breast cancer is 1% for a woman at

age 40 who participates in routing screening. If a

woman has breast cancer, the probability is 80% that

she will get a positive mammography. If a woman does

not have breast cancer, the probability is 9.6% that will

also get a positive mammography. A woman in this age

group had a positive mammography in a routine

screening. What is the probability that she actually

has breast cancer? ____%

Many studies showed that people were mostly unsuccessful

in being able to solve these types of problems (McDowell &

Jacobs, 2017), and that they often neglect base rates, which has

been used as an argument against the idea that people are Bayesian

thinkers (Bar‐Hillel, 1980; Kahneman & Tversky, 1972, 1973).

Gigerenzer and Hoffrage (1995) used an evolutionary framework to

argue that the presentation of probabilities in this way is a recent

phenomenon, and that in natural sampling (Kleiter, 1994), information

would actually be updated sequentially relative to an event's

frequency in the environment. A computationally easier way for an

organism to acquire the same information. Building joint frequencies

from natural sampling leads to the following description for the

breast cancer example (Gigerenzer & Hoffrage, 1995: p. 688):

Ten out of every 1,000 women at age 40 who

participate in routine screening have breast cancer.

Eight of every 10 women with breast cancer will get a

positive mammography. Ninety‐five out of every 990

women without breast cancer will also get a positive

mammography. Here is a new representative sample

of women at age 40 who got a positive mammography

in routine screening. How many of these women do

you expect actually have breast cancer? ___ out of ___.

In this format, based on sampling with experience, the base

rate is preserved but contained in the joint frequencies and thus

can be ignored, which greatly simplifies the calculation (Gigerenzer

& Hoffrage, 1995; McDowell & Jacobs, 2017). Gigerenzer and

Hoffrage (1995) found that when the problem is framed this way,

the correct Bayesian solution was given by 46% of participants,

relative to 16% in the textbook version of the question.

Subsequently, extensive research has shown that how information

is given, and its structure is important in Bayesian inference and

this has been called the natural frequency facilitation effect

(reviewed in: Brase & Hill, 2015; Johnson & Tubau, 2015;

McDowell & Jacobs, 2017). Performance in humans is further

increased when visual aids or interactive, experiential problems are

presented (McDowell & Jacobs, 2017).

F IGURE 1 Schematic of Bayesian decision making (Modified from Ma, 2019).
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3.1 | Criticisms of BDT

The criticisms of BDT are not as substantive as those of DPT, perhaps

because BDT is newer. Bayesian modelers have been accused of not

sufficiently considering alternative models (Bowers & Davis, 2012),

while Bayesian models have been criticized as overly flexible, difficult

to falsify (Bowers & Davis, 2012), and not representing actual

probabilities (Block, 2018; Howe et al., 2006). Those using BDT have

argued against these criticisms, differentiating between weak and

strong modeling procedures (Ma, 2019; McNamara & Chen, 2022).

Like DPT, BDT has also been criticized because the exact neural

processes that implement Bayesian decisions are not clear

(Block, 2018; Jones & Love, 2011), however this is currently a

promising and active area of research (Ma, 2019). Finally, Jones and

Love (2011) argue that BDT does not adequately consider the

computational constraints individuals face due to limited processing

and memory (i.e., bounded rationality, Simon, 2000), which we

discuss further below.

4 | COMMONALITIES BETWEEN DPT
AND BDT

DPT and BDT intersect in several key areas. Both assume agents are

rational, both emphasize the importance of considering the values and

probabilities of different outcomes when making decisions, and both

recognize the role of cognitive biases and heuristics. However, DPT

assumes that individual's use logical inference and stresses that biases

and errors in judgments are frequent (De Neys & Pennycook, 2019;

Frankish, 2010), while BDT assumes that individual's use probabilistic

inference and are relatively good at making decisions based on this

(Poole, 2000).

Importantly, DPT and BDT both assume that routine, frequent,

commonly encountered situations lead to the evolution of quick

heuristic decision‐making. The similarities between these approaches

are most evident when DPT theorists apply “conflict resolution

paradigms” in testing their models, as these work by cueing

participants to a probability distribution that should illicit an intuitive

response, and then introducing a conflict that goes against this

probability to initiateType 2 processing (Evans, 2007). This literature,

as well as the dual process learning literature that examines how a

skill learned viaType 2 can slowly be allocated to unconscious Type 1

processing, both demonstrate that the binary (0–1) view of cognitive

processing used in DPT is unlikely to be correct and indeed is often

not utilized by DPT theorists themselves (Keren & Schul, 2009). Any

trigger of conscious analyses in DPT is labeled as Type 2 processing

(i.e., the binary representation of no thinking vs. some thinking), but

this Type 2 process could represent anything from a quick check of

the impressions of Type 1 to the intensive processing needed to

solve a long math equation or to write this article. This variation in

cognitive effort is more accurately thought of as a continuum rather

than one entity (Keren & Schul, 2009; Newstead, 2000), and if one

conceives of Type 2 processing as a continuum (or a distribution of

mental effort), it fits nicely into the BDT framework of probabilistic

reasoning (Sih, 2013).

5 | WILD ANIMAL DECISION‐MAKING

What, if anything, can our overview of DPT and BDT tell us about

how wild animals make decisions? Animals are motivated to move

around and make decisions in their habitat due to the four “F's”

(Dill, 2017), food (distribution and abundance), fornication (mating

opportunities), fear (fleeing or avoiding risks), and fighting (con-

specific competition) (Finnerty et al., 2022). Within these varied

situations, when are decisions more likely to be made with quick

heuristic decisions versus more intense processing? Or put another

way, what triggers the switch from intuition to deliberation? Note

that for the remainder of the paper we consider Type 2‐like

processes as involving a continuum of cognitive or mental effort,

the degree of which depends on the situation or problem

encountered. We define mental effort following Shenhav et al.

(2017: pp. 100–101) as, “mediating between a) the characteristics of

a target task and the subject's available information processing

capacity and b) the fidelity of the information‐processing actually

performed, as reflected in task performance”.

Both DPT and BDT would predict that quick, immediate

reactions should occur when primed by predictable features of the

environment (Toates, 2006). In line with this, Carpenter and Williams

(1995) found that situations that occur with a higher probability are

more likely to result in quick Type 1‐like decisions for people. Thus,

commonly encountered, routine situations should lead to the

development of a heuristic reflexive action that allows the

decision‐maker to react quickly with little thought. It follows then

that novel environmental circumstances or situations that occur rarely

could be expected to trigger more intensive processing because there

is little precedent (yet) for how to deal with them (Trimmer

et al., 2008). Indeed, evidence from animals supports use of a

decision‐making framework where they evaluate the probability of a

given outcome and base their decisions on the distribution of

outcomes from past situations that were like the current situation

(Valone, 2006; Lange & Dukas, 2009).

In associative dual‐process models of behavior, habitual, Type‐1‐

like responses in animals are assumed to develop viaThorndike's (1911)

law of effect, where the experience(s) of receiving a reward after a

certain response strengthens the association between the context and

the response, such that later, the same context directly primes the

response (Wit & Dickinson, 2009). In a paradigm used often in

laboratories, animals first learn, via goal‐directed action, that in the

context of certain Stimuli (S), a Response (R) leads to a desired

Outcome (O) (R‐O association). With repeated experience, the R‐O

contingency is degraded, and a Stimuli‐Response (S‐R) association ends

up leading to the expression of the behavior, even in the absence of the

desire or need for the Outcome (i.e., the behavior becomes habitual

and no longer goal‐directed) (Dickinson, 1985, 1994; Wit &

Dickinson, 2009). A hallmark of this framework is that the outcome
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becomes devalued (Wit & Dickinson, 2009). For wild animals, survival is

a constant struggle to attain resources and avoid predators, outcomes

that are unlikely to be devalued, even if they are the result of apparent

habitual behavior. However, importantly this research shows that

animals can alter their habitual behavior and it becomes goal‐directed

once again when the stimuli or reinforcer is less predictable or when

the context changes (Bouton, 2021). If we assume that goal‐directed

behavior requires more mental effort, then in this situation in DPT

terms, animals would be switching from Type 1 back to Type 2. Thus,

greater processing is suggested to be needed for cues that have an

unpredictable or uncertain relation to an outcome (Hogarth et al., 2008;

Kaye & Pearce, 1984; Pearce & Hall, 1980; Wilson et al., 1992). This is

related to the Rescorla‐Wagner model of Pavlovian conditioning

(Rescorla & Wagner, 1972; Wagner & Rescorla, 1972), which has a

great amount of support (Miller et al., 1995). This model shows that the

amount of associative learning that occurs on a trial‐by‐trial basis

decreases as an outcome is fully predicted by a stimulus. However,

when a stimulus is surprising relative to an outcome, associative learning

is faster (Courville et al., 2006; O'Reilly, 2013), and presumably requires

some mental effort.

Similarly, mismatches between expectations and reality (or

between prior and posterior beliefs) are suggested by many DPT

theorists to trigger Type 2 analytic thinking. When a conflict is detected

between the assessment of the situation and the quick, intuitive

decision of Type 1, Type 2 processes are suggested to be engaged (e.g.,

De Neys & Glumicic, 2008; Evans, 2007, 2009; Pennycook, 2017). In

conflict resolution paradigms, when humans are given a problem where

the correct answer goes against prior cueing of the probability of that

being the correct answer (i.e., a conflict is present), relative to non‐

conflict problems they show greater response times, less confidence in

their answer, and activation in brain regions that are thought to detect

and mediate conflict (reviewed by: Bago & De Neys, 2017).

Field experiments can provide valuable insights into how animals

make decisions. Our research on wild vervet monkey (Chlorocebus

pygerythrus) foraging decision‐making in small‐scale navigation arrays

shows that the computational complexity of the problem presented to

the monkeys determines whether they will immediately respond with

heuristic responses or with evidence of greater deliberation and

mental effort. Our foraging arrays test optimal foraging theory (Krebs

& Stephens, 2019) and require the animals to find the shortest path

through a set of baited targets, thereby saving energy in acquiring a

reward. These mimic the combinatorial optimization problem of the

Traveling Salesman and arrays with fewer targets or with simple

solutions that adhere to heuristic strategies are more easily solved

than those with more platforms and set ups that do not lend

themselves to simple decision rules. When we used a simple

pentagon foraging array where all five platforms were baited

identically and the shortest path was a circle around the platforms

consistent with at least two heuristic rules (Kumpan et al., 2019;

Teichroeb & Aguado, 2016), the monkeys immediately used this

optimal path and rarely deviated from it (Figure 2). However, when

we used a more difficult array with six platforms (i.e., the Z‐array in

Teichroeb & Smeltzer, 2018) that were again baited identically, the

vervets had to work harder to find short, relatively optimal routes,

and they sampled more options before settling on a route that they

utilized with greater frequency over time (Figure 2). We interpret this

as evidence of greater mental effort in the Z‐array to find paths that

were closer to optimal than those they initially used.

Other studies on humans (Franco et al., 2021; Murawski &

Bossaerts, 2016) and nonhuman primates (Hong & Stauffer, 2023)

have also demonstrated that as computational complexity increases,

mental effort and deliberation time increase, and performance

decreases. Hong and Stauffer (2023) found that rhesus macaques

(Macaca mulatta) in their laboratory sought to optimize their access to

rewards and applied different algorithms depending on the complex-

ity of the problem presented. Importantly, as problems increased in

complexity, the monkeys showed concomitant increased tendencies

to satisfice and indeed each had a satisficing threshold, where time

and effort invested in finding the optimal solution was considered too

great. Satisficing is defined as finding solutions that are subjectively

satisfactory even though they are not optimal (Simon, 1956). Thus,

when increased cognitive effort was not worth the marginal gain in

the reward above that which would be attained using a simple

heuristic, satisficing was observed (Trimmer, 2016).

Our foraging experiments comparing multiple primate species

have also demonstrated that species that are solving a problem

resembling what they experience in their natural daily foraging,

respond with quick, invariable, near‐optimal, heuristic solutions.

Whereas species that do not typically feed on stationary, renewing

resources like our foraging platforms, show a pattern of iterative trial‐

and‐error learning and improvement over time, indicative of greater

mental effort (Kumpan et al., 2022). Thus, dietary niche influenced

whether an animal was prepared via their past experiences and

evolutionary history (McNamara & Houston, 1980; McNamara

et al., 2006) to respond to our experimental arrays with something

akin to Type 1‐like or Type 2‐like processes.

Taken together, this evidence all suggests that fast, intuitive, Type

1‐like responses should be seen for routine situations, for predictable

signals/cues that have a certain relationship (i.e., known and constant)

with an outcome, and for easy problems that experience or evolutionary

history has prepared the individual for. Whereas, mental effort should

increase as situations become more novel, signals/cues become less

predictable or surprising, when these cues have an uncertain relationship

to an outcome, and when problems increase in computational complexity

(Figure 3). With the caveat that when perceived computation complexity

is too great, an easy, satisficing heuristic may be preferred to save on

effort (Hong & Stauffer, 2023; Trimmer, 2016).

6 | ECOLOGICAL AND SOCIAL CONTEXTS
TRIGGERING INCREASING COGNITIVE
EFFORT

Animals utilize their sampling of ecological and social information to

form rational expectations about the future and generate decision

rules (Garber et al., 2009). Because Type 2‐like decision‐making is
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F IGURE 2 Performance of three individual wild vervet monkeys (Chlorocebus pygerythrus) completing a pentagon shaped foraging array with
five food platforms baited identically (Kumpan et al., 2019) versus the performance of three other individuals completing a Z‐shaped array with
six platforms baited identically (data only shown when beginning at the corner of the Z on platform 5, Teichroeb & Smeltzer, 2018) at Nabugabo,
Uganda. The similarity index shows the similarity of the path taken on each trial over time relative to the path the individual took on the previous
trial (Saleh & Chittka, 2007). Error bars show standard error. In the pentagon array, individuals immediately used the path that goes around the
outside of the pentagon, which corresponded to the shortest path, and rarely deviated from it. For the Z‐array, the monkeys sampled different
paths before settling into a more consistent way to solve the array.
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more likely to occur when individuals find themselves in novel,

unpredictable circumstances, animals that live in more complex

ecological or social environments may not be able to rely on heuristic

decision‐making as often as those in simpler environments. Here we

assess and present hypotheses for how ecological and social factors

may trigger Type 2‐like cognition differently for animals with variable

socio‐ecologies.

6.1 | Ecological considerations

Ecological landscapes are complex, and animals are constantly

adapting to their changing environments by altering their behavior

(Tomasello & Call, 1997). According to Farina (2009), more heterog-

enous habitats and the use of resources located using different

sensory modalities increases the cognitive complexity of landscapes.

Examining these variables on a broad scale for animals in different

dietary niches, we see that habitat heterogeneity is influenced by (1)

plant and animal species richness, (2) seasonal variation in resource

abundance, and (3) home range size. Plant and animal species

richness decreases, and seasonal variance in resource availability

increases, with latitude and altitude (Jinsheng & Weilie, 1997;

Moeslund et al., 2013), but if animals are adapted to their

environment and seasonality is predictable, simple heuristics may

suffice for decision‐making in these habitats. Home range size is

largely determined by an animal's body mass and diet, where larger

animals need bigger ranges and range size is greatest for carnivores,

smaller for omnivores, and smallest for herbivores (Tucker

et al., 2014). This order of range size needs based on diet also

correlates generally with the predictability of food resources and to

some degree with the sensory modalities needed to find and use

them. For carnivores, food is mobile, unpredictable, and sparsely

distributed (Carbone et al., 2007; Kelt & Van Vuren, 2001) and must

be located using multiple sensory modalities (Leavell & Bernal, 2019).

Omnivores experience a mix of spatially stable, predictable food

sources and mobile, unpredictable prey and due to this, may need to

utilize even more sensory modalities than carnivores to locate

different food sources. The herbivore category can be broken down

into several smaller categories, like frugivore, granivore, nectivore,

and folivore, all with their own set of adaptations. Frugivores,

granivores, and nectivores typically rely on ephemeral, clumped food

sources that vary seasonally in their spatiotemporal availability, and

due to this, they often have moderately large home ranges

(Milton, 1981). Whereas folivores and grazing herbivores feed on

vegetation that is more predictable in space and time and less

patchily distributed and their home ranges tend to be small (Tucker

et al., 2014). It could be argued that folivores and grazing herbivores

also locate their food using fewer sensory modalities than frugivores,

granivores, and nectivores, but this depends on the species and their

exact niche and adaptations. There is a lot of evidence within the

primate order that relying on fruit presents more complex problems

to animals than relying on leaves (Milton, 1981) and that this has

contributed to the cognitive development of frugivores (DeCasien

et al., 2017; DeCasien & Higham, 2019). Overall, these considerations

suggest that carnivores and omnivores are forced to engage in Type

2‐like cognitive effort more so than animals relying solely on plant

foods.

Regarding the seasonality of resources, the harshness of the low‐

availability seasons may be important in determining the need for

greater mental effort. Animals that can predict resource access can

buffer nutritional stress in seasons of low food abundance

(Zuberbühler & Janmaat, 2010). Phenological synchrony among trees

of similar species adds an element of temporal periodicity that helps

make an environment more predictable. However, depending on how

extreme seasonality is in various habitats, periods of low food

availability may require resource switching and lead to the need for

Type 2‐like cognitive processing. For example, in the tropical forests

of Central and South America, primates consume nectar during dry

F IGURE 3 Graphs depicting the theoretical amount of mental effort an animal should exert depending on how routine a situation is, how
accurately a cue or signal predicts an outcome, or how computationally complex a problem is.

TEICHROEB ET AL. | 9 of 21

 10982345, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ajp.23565 by U

niversity O
f T

oronto M
ississauga, W

iley O
nline L

ibrary on [17/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



seasons when fruit abundance is low. Nectar can serve as a good

resource for sugar and water along with micronutrients but can be

costly to acquire because it is in small, depletable patches. Thus, we

would expect that primates relying on nectar should decrease the

cost of acquiring it to balance the energetic gains available

(Garber, 1988). Indeed, tamarins (Saguinus fuscicollis and S. mystax)

were found to use a conserved set of sequential steps to access

patches of nectar from Symphonia globulifera flowers. Their move-

ment towards these resources incorporated the use of learning and

memory to reduce travel and directly approach the reward and they

traveled farther to reach feeding sites of higher preference,

bypassing low preference sites, which might indicate decision making

based on expectation of reward (Garber, 1988). The self‐control

needed to bypass an immediate food reward in favor of moving

towards others, where a greater or a different reward is expected,

suggests the use of cognitive effort (Janson, 2007).

Low productivity areas and seasonal environments may increase

information‐seeking behavior by animals, which involves metacognition

(i.e., knowing what you do not know and seeking to improve it; Roberts

et al., 2012). Information seeking can provide precise updates about the

current environment and be used to update cognitive maps (Hunt

et al., 2021; Poucet, 1993). Although optimal foraging constrains

animals to attempt to maximize their energy intake on shorter time

scales, exploratory movements over the longer term allow them to

gather information that may reduce the overall variance in energetic

output (Spiegel & Crofoot, 2016). For example, Janmaat and Chancellor

(2010) observed that gray‐cheeked mangabeys (Lophocebus albigena

johnstonii) appeared inefficient in exploring a newly colonized area,

covering large swaths to gather information and become acquainted

with the resources. However, the group showed logical rules in decision

making, trading off the risk of predation for increased foraging

efficiency by traveling in a more spread‐out fashion in the newly

colonized forested area and revisiting certain fig trees often to update

their information on the fruiting state of trees. While this example

seems to involveType 2‐like processes, information seeking can also be

about Bayesian updating information on food availability in the range

that would later support more heuristic, Type 1‐like decision‐making.

For instance, information is attained and updated by animals during

their routine foraging by assessing resources enroute, or nearby,

utilized food sources for future foraging (Janmaat et al., 2014; Janson &

Byrne, 2007; Schmidt et al., 2010). This updating helps the forager

anticipate the amount of food that will be available and its regeneration

potential to control and pattern their access to resources (Tujague &

Janson, 2017). Indeed, agent‐based models show that foraging

efficiency increases when animals carry chronological memory that

integrates the synchronicity in intra‐species resource production, rather

than just associative memory (Robira et al., 2021).

6.2 | Group movements to find resources

Group‐living is beneficial for avoidance of predation and cooperative

resource defense, but also constrains individual decision‐making

because there is a need for the group to reach a consensus when

making group movement decisions. In social species, group move-

ments are a collection of individual decisions that often result in a

consensus about when and where to move, and these individual

decisions could be based on simple reactive rules or on more context‐

dependent complex reasoning (Conradt & List, 2009; Williams

et al., 2022). Heuristics are often used to maintain group cohesion,

as many group movements follow self‐organization principles, where

individuals use simple spatial heuristics that lead to emergent, global

group‐level decisions (reviewed in: Couzin & Krause, 2003; Conradt

& Krause, Couzin, et al., 2009; King & Sueur, 2011; Sueur &

Deneubourg, 2011). For example, in starling (Sternus vulgaris)

murmurations, individuals use simple rules to coordinate movements

with seven neighboring birds, minimizing the effort and costs of

cohesion (Bialek et al., 2008; Young et al., 2013). These self‐

organization principles may be most important during predation

events when all group members are at risk and have the same goal

(stay alive!), so immediate and decisive action is needed (Trimmer

et al., 2008). The heuristic in this case may be akin to the selfish herd

principle—stay close to your neighbors and avoid the periphery

(Hamilton, 1971).

Self‐organizing heuristics can lead to accurate outcomes, even

with only a few informed leaders. Dyer et al. (2009) showed that a

few informed individuals could accurately guide both small and large

human groups towards a target without obvious communication. The

impact of informed leaders is amplified by the participation of

uninformed or unbiased individuals (Couzin et al., 2011; West &

Bergstrom, 2011). In these cases, it may only be the leader that must

engage in mental effort. However, in many group movements,

members can choose between roles (Petit & Bon, 2010) as leaders,

followers, or influencers (i.e., individuals whose actions cause

behavioral change in other group members, Strandburg‐Peshkin

et al., 2018), so their chosen role may either involve little thought or

more intensive cognitive effort. When a group member initiates

movement to a new foraging patch, others may use simple heuristics

to determine if the destination and timing are optimal for their

needs (e.g., Diffusion Model: Pelé & Sueur, 2013, Optimal Foraging

strategies: Davis et al., 2022, Mimetism: Meunier et al., 2006, choice

popularity: Tomlin, 2021). If the consensus costs are high, Type 2‐like

processes may be initiated, and an individual may attempt to lead the

group in another direction rather than support the current leader.

Leading, especially when there are conflicts of interest, could be time

consuming and costly to the leader (e.g., mental energy, predation

risk, and lost foraging time) and possibly to the group (e.g., increasing

time to reach consensus). Thus, in group movements, individuals must

balance their current needs with potential risks (Pelé & Sueur, 2013)

by using a combination of Type 1‐like and Type 2‐like decision‐

making. When there are conflicts in the timing and direction of group

movements between individuals, although more individuals may need

to engage in more intensive cognitive processing, there are evolved

democratic strategies that groups use to come to a consensus and

mitigate conflicts of interest (e.g., Davis et al., 2022; King &

Cowlishaw, 2009; Strandburg‐Peshkin et al., 2015).
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6.3 | Social complexity

The complexity of animals’ social groupings may also influence the

amount of daily cognitive effort they require when making decisions.

Social organization (as defined by Kappeler & van Schaik, 2002 to

include group size, spatiotemporal cohesion, and sex ratio) con-

tributes to how predictable social life is for animals. Small, cohesive

groups can develop routines easily and reach consensus more quickly

(Papageorgiou & Farine, 2020). Larger groups have more potential for

individual behavior to disrupt routines and conflicts of interest are

more likely to arise (Strandburg‐Peshkin et al., 2015). As group

cohesion decreases, the possibility for disruption in routine events is

also increased, thus individuals in multilevel societies and especially

those in fission‐fusion societies may have to engage in greater

mental effort more often. Group stability lends itself to predictability

but when animal aggregations are transitory or membership is

inconsistent, relationships among group members are unclear (Parrish

& Edelstein‐Keshet, 1999). Thus, individuals may not know when

they can feed near another individual, or who will, and who will not,

direct aggression towards them, which suggests they have to pay

attention and adjust continually.

Sex segregated groups have no mating conflict and individual

needs are mostly aligned, so these types of groups can probably rely

on heuristic decision‐making more often. When groups contain both

males and females there is the potential for mating conflict and

sexual coercion. In monogamous and polygynous groups with a single

male, sexual conflict is less likely as the females have little choice in

their mate (Fedigan, 1992), although they can attempt extra‐group

copulations, instances that may call for strategic Type 2‐like thinking

for both the female and the male in her group (Schillaci, 2006).

Polygynandrous groups with multiple males and multiple females

present the biggest potential for unpredictable situations and mate

choice leading to greater need for mental effort (Shultz &

Dunbar, 2007). Attraction to the largest, loudest, or flashiest mate

may reflect a simple Type 1‐like consideration where the primary

contribution to reproduction is genetic material. The development of

bright and loud secondary sexual characteristics in many species

indicates that within the context of mate choice, bigger is often

better (Ryan et al., 2019). A female just has to update her knowledge

of the variance in male quality for the current year, and based on her

experience from previous years, she can make a relatively good mate

choice (McNamara et al., 2006), although the amount of effort she

has to put in to learning male variance and her acceptance threshold

may vary depending on conditions (Collins et al., 2006). Solitary

species and lek‐forming species go through a similar mate choice

process once mates are found and can be compared.

However, reproductive decision making can also involve analytic

and calculated choices (Akre & Johnsen, 2014; Castellano et al., 2012;

Kelley & Kelley, 2014; Stumpf & Boesch, 2005), especially when the

decision‐maker will remain in the same social group with their mate,

who may provide fitness‐altering resources, such as food availability,

social capital, and infant care and protection (Archie et al., 2014; Silk

et al., 2009; van Schaik & Kappeler, 1997). Reproductive decision

making can include considerations of the perceived costs and

benefits of the exchange, which may be influenced by factors such

as attractiveness (e.g., size, strength, or perceived value), public

information (e.g., dominance rank, outcomes of intrasexual contests,

and outcomes of intersexual courtship displays), and private

information (e.g., reproductive stage or condition of the decision‐

maker) (Buston & Emlen, 2003; Castellano et al., 2012; Noë &

Hammerstein, 1995). Threats to offspring, such as infanticidal males

or predators, are also key factors shaping reproductive and dispersal

decisions. The need to confuse paternity among several males

(Hrdy, 1979) but also concentrate paternity certainty in a dominant

male, if he will remain high ranking, may require a series of strategic

decisions and be especially important for animals with long life

histories and altricial young (Sicotte et al., 2017; Stumpf &

Boesch, 2005; Teichroeb et al., 2009, 2012; Zhao et al., 2011).

However, it is important to consider that evolved strategies can also

lead to these complex patterns, and they may not necessarily be the

result of proximate decision‐making.

Social structure, or the patterning of social relationships within

the group (Kappeler & van Schaik, 2002), can also affect how routine

and predictable everyday life is. If relationships are strictly

differentiated by factors like rank and kinship, social interactions

tend to be very predictable. Dominance hierarchies can function with

simple rules (Hemelrijk, 2011; Hobson et al., 2021), as can choices of

which individuals to form coalitionary relationships with (Range &

Noë, 2005). It may only be at times of instability in the hierarchy or

when new individuals immigrate into the group that mental effort

must increase until dominance relationships are again settled.

However, low‐ranking individuals may need to utilize cognitive effort

to outwit dominant individuals for contestable resources. Our field

experiments have shown that how individual's experience intra-

specific feeding competition can affect how frequently they need to

utilize Type 2‐like decision‐making. In a recent experiment on wild

vervet monkeys (C. pygerythrus), we showed that foraging monkeys

engaged in complex decision‐making when there was a risk of losing

food to conspecific competitors (Arseneau‐Robar et al., 2022). When

choosing which route to take, decision‐makers quickly incorporated

information on who was in the audience, their relative dominance

rank and distance (i.e., travel time) from the foraging array, as well as

their own ability to extract food resources that required handling

before competitors could arrive (Arseneau‐Robar et al., 2022). This

sensitivity to competitors in the audience has also been demon-

strated in food‐caching species (Clarke & Kramer, 1994; Emery, Dally

and Clayton, 2005; Lahti & Rytkönen, 1996; Lahti et al., 1998;

Samson & Manser, 2016), where kleptoparasitism is common, and

suggests that feeding competition can increase mental effort in

certain situations, especially for low‐ranking individuals that may lose

resources. Further analyses of our vervet experiment also showed

that dominant males, who rarely experienced contest competition at

the platforms, paid little attention to the food‐handling techniques

used by others. Consequently, they were slow to learn the efficient

food‐handling techniques that their lower‐ranking group members

innovated (Arseneau‐Robar et al., 2023).
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In primatology and evolutionary psychology, there is a rich body

of literature arguing for the importance of group size and social

complexity in driving the evolution of large brain size (e.g., Byrne &

Whiten, 1988; Dunbar & Shultz, 2007; Dunbar, 1998; Humphrey,

1976; Jolly, 1966) and counter arguments and evidence against this

idea (e.g., Barrett et al., 2007; DeCasien & Higham, 2019; DeCasien

et al., 2017; Reséndiz‐Benhumea et al., 2021). Our review of DPT and

BDT suggests that if social complexity is routine and predictable, it

will not require intensive cognitive processing on a daily basis,

although learning the rules that govern the society may be

challenging to young individuals, requiring a long juvenile period

(Uomini et al., 2020).

7 | ANIMAL DECISION MAKING AND
COGNITIVE OVERLOAD IN THE
ANTHROPOCENE

Animals possess a finite cognitive processing capacity, and they

must be selective about the information they pay attention to

(Dayan et al., 2000; Dukas, 2002, 2004; Evans, 2006). Cognitive

constraints limit the ability to perceive information, or to process it

(Farina et al., 2005; Lebiere & Anderson, 2011; Real, 1991), and

make it necessary to control the amount of information taken in

(Faisal et al., 2008), which is done via attentional mechanisms that

sort incoming sensory stimuli relative to its relevance to the

organism at that time and place (Dukas, 1998b; Evans, 2006;

Kahneman, 1973; Simon, 2000). Psychological theories of attention

suggest that there is a maximum amount of information that can be

attended to at once, due to the cognitive load accrued (Dayan

et al., 2000; Kahneman, 1973). Problem solving contributes to

cognitive load, meaning that organisms must divide their limited

cognitive resources between information gathering, information

processing, and decision making or problem solving (Sweller, 1988).

When decision‐makers attempt to incorporate more information

than they can process, they suffer from cognitive overload, where

paradoxically, more information and more options leads to less

accurate decision‐making (Schwartz, 2004).

Human and animal studies have shown that increased cognitive

load impacts decision‐making. For example, Whitney et al. (2008)

found that creating a cognitive load with a working memory task

increased participants’ acceptance of risky decision making, which

was interpreted as evidence of satisficing to minimize cognitive

effort. DPT studies on humans have found that Type 2 decision‐

making, or Type 2 monitoring of Type 1, is impaired by distractions or

concurrent involvement in another cognitive task (Pashler, 2000;

Phillips‐Wren & Adya, 2020). In animals encountering a predator,

decision‐makers are slower to respond when they are distracted by

other environmental stimuli, such as anthropogenic noise (Chan

et al., 2010; Purser & Radford, 2011).

Increased cognitive load requires greater investment in work-

ing memory. Memory is the ability to store information from the

past so that it can be retrieved later and is typically divided into

working (or short‐term) and long‐term memory. Whereas long‐term

memory can contain a great deal of information, working memory is

limited to a small number of representations that include newly

perceived sensory information and information activated from

long‐term memory (Evans & Stanovich, 2013; Ma et al., 2014; Turi

et al., 2018). Working memory provides the most relevant and up‐

to‐date information for an individual's decision making. There are

many models that have been proposed to conceptualize the limits

of working memory in humans. (Whether these also apply to

animals is an open question, but there is good evidence for similar

working memory in mammals and birds, Nieder, 2022). The most

persuading models are the slot model and the resource model,

which are both well‐supported and argue that working memory is

limited by the amount and quality of the information it can retain

(Cowan, 2010; Ma et al., 2014; Saults & Cowan, 2007). The

resource model is especially interesting as it proposes that

individuals can prioritize stimuli and increase the precision of their

recall of certain stimulus. Stimuli are prioritized by their salience,

such as their loudness, brightness, threat‐level or overall promi-

nence within the environment. However, there is a trade‐off in that

the recall of stimuli that are not prioritized is lessened (Ma

et al., 2014).

Recall of short‐term memories declines over time and becomes

less reliable when memories are not used, unless they are

consolidated into the long‐term memory through repetition

(Cowan, 2010; Saults & Cowan, 2007; Turi et al., 2018). Importantly,

heuristic decision‐making uses long‐term memory (Dougherty

et al., 2003; Kahneman & Tversky, 1973; Tversky & Kahneman, 1973),

to gain an understanding of priors and build conditioned responses

through repeated exposure to a given stimuli (Bouton, 2021). By

using heuristics based on past memories, animals avoid overloading

their working memory and can make faster decisions (Taffe &

Taffe, 2011; Turi et al., 2018). The accuracy of these decisions

depends on how well cue‐response systems are matched with their

environment (Sih, 2013).

The major issue many animal populations are now facing, in what

has been conceptualized as the Anthropocene (Behie et al., 2019), is

that rapid environmental changes are causing a mismatch in the

environment they are experiencing versus the one they evolved in.

Sih (2013) defines the current human‐induced rapid environmental

change (HIREC) as encompassing habitat change, exotic species

introductions, human harvesting, and climate change. Recent

research has been increasingly dedicated to understanding how

animals are adjusting to HIREC. Most of this work has shown that

animals first response is to change their behavior and that species

that are the most plastic in their behavior and physiology fair the best

under changing conditions and in novel environments (reviewed in:

Hendry et al., 2008; Snell‐Rood et al., 2018; Wong & Candolin, 2015).

However, behavioral responses to HIREC can also be maladaptive

and lead animals to fall into ecological or evolutionary traps, where

habitat choices and evolved responses caused reduced survival and

reproduction in the current context (Robertson & Hutto, 2006;

Schlaepfer et al., 2002).
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Sih (2013) lays out a useful framework for understanding animal

responses to HIREC, showing that animals’ evolved cue‐response

systems (Type 1‐like heuristics) are disrupted by the novel situations

presented by HIREC; but the keys to understanding how animals will

respond is to determine the degree of mismatch between their earlier

experiences and their current environment, as well as their ability to

learn to deal with new conditions (Greggor et al., 2019; Sih, 2013).

Novel situations that are encountered only once and are fatal do not

allow for learning; however, if animals experience new stimuli and

situations several times and are able to learn how their past decisions

led to differing outcomes, they may be able to learn ways to deal with

HIREC (although there are constraints to learning, see Greggor

et al., 2019).

Learning processes require mental effort and animals must deal

with this, as well as their complex social and ecological environ-

ments, that include new pressures from HIREC. Given our review of

DPT and BDT, what are the chances that animals are increasingly

suffering from cognitive overload in the Anthropocene and what is

the effect on their decision‐making? It is useful to categorize the

uncertainty that animals may experience in the Anthropocene by

the two constructs of uncertainty: (1) risk, or expected uncertainty,

and (2) ambiguity, or estimation uncertainty (Dayan & Long, 1998;

Ellsberg, 1961; Knight, 1921; Payzan‐LeNestour & Bossaerts, 2011;

Preuschoff & Bossaerts, 2007). The first type of uncertainty, risk,

arises from environmental stochasticity, and cannot be predicted

by an animal; however, they can learn about new risks of mortality

caused by HIREC (e.g., collisions with vehicles, introduction non‐

native predators, electrocution on power lines) by observing

conspecific and hetero‐specific behavior and mortalities (Sih

et al., 2010). Ambiguity occurs due to the animal's incomplete

knowledge of the environment, and can be improved by obtaining

information (O'Reilly, 2013). Indeed, Dall et al. (2005) have

suggested that animals must adjust their behavior and redirect

their time and energy to information gathering to adapt to changing

ecological circumstances, but this requires Type 2‐like mental

effort.

The many distractions and novel cues that animals encounter in

environments affected by HIREC, and the increased need for learning

and information gathering, are bound to be highly cognitively

demanding. The research reviewed above all suggests that animals

increased cognitive load under HIREC will result in riskier, more

error‐prone decisions, and a greater reliance on heuristic, Type 1‐like

processes. Having to fall back on heuristic decision‐making would not

be a problem under stable, predictable environmental conditions

where intuitive responses tend to be both correct and fast (Bago &

De Neys, 2017; Evans, 2019), but under novel, changing conditions,

cue‐response systems are likely to be mismatched (Greggor

et al., 2019; Sih, 2013), and certain cues may supersede all others

to lead to maladaptive decisions (Blumstein & Bouskila, 1996; Lima &

Dill, 1990). The impact of inaccurate decision‐making under HIREC is

increasingly obvious and its eventual effects on different animal

populations is not fully understood (Pollack et al., 2022), making this

an urgent area for further research.

8 | CONCLUSIONS

Our review of DPT and BDT showed that there are several

similarities in these approaches. Both theories suggest that wild

animals are likely to respond with quick heuristic decisions when they

have been primed by experience or evolutionary history and the

situation is routine and predictable, and/or signals/cues have certain

relationships with the outcome. Both theories also suggest that more

intensive, time‐consuming cognitive effort should result from novel,

surprising, computationally complex situations, and signals/cues with

unpredictable or uncertain relationships to an outcome. Considering

this, we discussed the amount of cognitive effort animals with

different socio‐ecologies may have to exert in different situations. In

stable systems, evolution and learning prepares animals with accurate

cue‐response systems that suggest that heuristic Type 1‐like

decision‐making should always be our null hypothesis. However,

current rapid human‐induced environmental changes are leading to a

plethora of novel situations for animals and bombarding them with

cues that can cause cognitive overload and a greater tendency to

satisfice and rely on heuristic decision‐making. This is likely one

reason that maladaptive decision‐making occurs and leads animals

into ecological and evolutionary traps.
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